Semi-Analytical Solution for Vibration of Nonlocal Piezoelectric Kirchhoff Plates Resting on Viscoelastic Foundation
Authors
Abstract:
Semi-analytical solutions for vibration analysis of nonlocal piezoelectric Kirchhoff plates resting on viscoelastic foundation with arbitrary boundary conditions are derived by developing Galerkin strip distributed transfer function method. Based on the nonlocal elasticity theory for piezoelectric materials and Hamilton's principle, the governing equations of motion and boundary conditions are first obtained, where external electric voltage, viscoelastic foundation, piezoelectric effect, and nonlocal effect are considered simultaneously. Subsequently, Galerkin strip distributed transfer function method is developed to solve the governing equations for the semi-analytical solutions of natural frequencies. Numerical results from the model are also presented to show the effects of nonlocal parameter, external electric voltages, boundary conditions, viscoelastic foundation, and geometric dimensions on vibration responses of the plate. The results demonstrate the efficiency of the proposed methods for vibration analysis of nonlocal piezoelectric Kirchhoff plates resting on viscoelastic foundation.
similar resources
A Semi-Analytical Solution for Free Vibration and Modal Stress Analyses of Circular Plates Resting on Two-Parameter Elastic Foundations
In the present research, free vibration and modal stress analyses of thin circular plates with arbitrary edge conditions, resting on two-parameter elastic foundations are investigated. Both Pasternak and Winkler parameters are adopted to model the elastic foundation. The differential transform method (DTM) is used to solve the eigenvalue equation yielding the natural frequencies and mode shape...
full textAnalytical Approach for Thermo-electro-mechanical Vibration of Piezoelectric Nanoplates Resting on Elastic Foundations based on Nonlocal Theory
In the present work, thermo-electro vibration of the piezoelectric nanoplates resting on the elastic foundations using nonlocal elasticity theory are considered. In-plane and transverse displacements of the nanoplate have been approximated by six different modified shear deformation plate theories considering transverse shear deformation effects and rotary inertia. Moreover, two new distributio...
full textsemi-analytical solution for static and forced vibration problems of laminated beams through smooth fundamental functions method
در این پایان نامه روش جدیدی مبتنی بر روش حل معادلات دیفرانسیل پارهای بر اساس روش توابع پایه برای حل مسایل ارتعاش اجباری واستاتیک تیرها و صفحات لایه ای ارایه شده است که می توان تفاوت این روش با روش های متداول توابع پایه را در استفاده از توابع هموار در ارضاء معادلات حاکم و شرایط مرزی دانست. در روش ارایه شده در این پایاننامه از معادله تعادل به عنوان معادله حاکم بر رفتار سیستم استفاده شده است که مو...
15 صفحه اولSemi-analytical Approach for Free Vibration Analysis of Variable Cross-Section Beams Resting on Elastic Foundation and under Axial Force
in this paper, free vibration of an Euler-Bernoulli beam with variable cross-section resting on elastic foundation and under axial tensile force is considered. Beam’s constant height and exponentially varying width yields variable cross-section. The problem is handled for three different boundary conditions: clamped-clamped, simply supported-simply supported and clamp-free beams. First, the equ...
full textA Semi-analytical Solution for 3-D Dynamic Analysis of Thick Continuously Graded Carbon Nanotube-reinforced Annular Plates Resting on a Two-parameter Elastic Foundation
The The main objective of this research paper is to present 3-D elasticity solution for free vibration analysis of elastically supported continuously graded carbon nanotube-reinforced (CGCNTR) annular plates. The volume fractions of oriented, straight single-walled carbon nanotubes (SWCNTs) are assumed to be graded in the thickness direction. An equivalent continuum model based on the Eshelby-M...
full textNonlocal Vibration Behavior of a Viscoelastic SLGS Embedded on Visco- Pasternak Foundation Under Magnetic Field
This paper is concerned with the surface and small scale effects on transverse vibration of a viscoelastic single-layered graphene sheet (SLGS) subjected to an in-plane magnetic field. The SLGS is surrounded by an elastic medium which is simulated as Visco-Pasternak foundation. In order to investigate the small scale effects, the nonlocal elasticity theory is employed due to its simplicity and ...
full textMy Resources
Journal title
volume 4 issue 3
pages 202- 215
publication date 2018-07-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023